Analysis of Bacteroides qPCR Utility for Estimating Bacterial Loading from Cattle

2012 National Water Conference
Bacterial Detection & Tracking Symposium
May 22, 2012

Kevin Wagner, Terry Gentry, Daren Harmel, Larry Redmon, Bob Knight, Allan Jones, Jamie Foster
Objectives

- **Our challenge:**
 - Accurately assessing contributions from various sources

- **Study objectives:**
 - Assess ability of BoBac marker to assess quantity of *E. coli* loading from cattle
 - Evaluate relationship between AllBac & *E. coli*
Methods

• Edge-of-field runoff collected over two years at seven grazing management sites

• Samples analyzed for:
 – *E. coli* - EPA Method 1603
 – *Bacteroides* (Layton et al., 2006)
 • Total *Bacteroides* spp. (AllBac)
 • Bovine-associated *Bacteroides* spp. (BoBac)
<table>
<thead>
<tr>
<th>Site-Yr<sup>1</sup></th>
<th>AllBac Median</th>
<th>BoBac Median</th>
<th>Grazing Management</th>
<th>Annual AUD/ha</th>
<th>Cattle on site during runoff-%<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef Cattle Systems Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB1-09</td>
<td>9.49E+06</td>
<td>6.18E+03</td>
<td>Ungrazed</td>
<td>0</td>
<td>No-0%</td>
</tr>
<tr>
<td>BB2-09</td>
<td>4.30E+06</td>
<td>4.59E+03</td>
<td>Properly stocked</td>
<td>147</td>
<td>No-0%</td>
</tr>
<tr>
<td>BB3-09</td>
<td>3.30E+06</td>
<td>6.13E+03</td>
<td>Overstocked</td>
<td>312</td>
<td>No-0%</td>
</tr>
<tr>
<td>BB1-10</td>
<td>3.58E+06</td>
<td>1.12E+05</td>
<td>Ungrazed</td>
<td>17</td>
<td>Yes<sup>3</sup>-20%</td>
</tr>
<tr>
<td>BB2-10</td>
<td>4.74E+06</td>
<td>8.87E+05</td>
<td>Properly stocked</td>
<td>301</td>
<td>Yes-67%</td>
</tr>
<tr>
<td>BB3-10</td>
<td>1.45E+07</td>
<td>2.90E+06</td>
<td>Overstocked</td>
<td>543</td>
<td>Yes-75%</td>
</tr>
<tr>
<td>USDA-ARS Riesel watersheds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SW12-08</td>
<td>7.61E+06</td>
<td>1.51E+03</td>
<td>Ungrazed</td>
<td>0</td>
<td>No-0%</td>
</tr>
<tr>
<td>SW17-08</td>
<td>5.22E+07</td>
<td>5.45E+06</td>
<td>Properly stocked</td>
<td>124</td>
<td>Yes-100%</td>
</tr>
<tr>
<td>SW12-09</td>
<td>4.18E+06</td>
<td>2.17E+03</td>
<td>Ungrazed</td>
<td>0</td>
<td>No-0%</td>
</tr>
<tr>
<td>SW17-09</td>
<td>1.58E+07</td>
<td>6.95E+06</td>
<td>Properly stocked</td>
<td>341</td>
<td>Yes-100%</td>
</tr>
<tr>
<td>Welder Wildlife Refuge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WWR1-10</td>
<td>2.74E+06</td>
<td>7.93E+04</td>
<td>Ungrazed</td>
<td>0</td>
<td>No-0%</td>
</tr>
<tr>
<td>WWR3-10</td>
<td>6.99E+05</td>
<td>1.73E+04</td>
<td>Properly stocked<sup>4</sup></td>
<td>0</td>
<td>No-0%</td>
</tr>
</tbody>
</table>
A. BCSC AllBac

BB1 $R^2=0.31$, $p=0.04$
BB2 $R^2=0.43$, $p<0.01$
BB3 $R^2=0.42$, $p<0.01$

B. Riesel AllBac

SW12 $R^2=0.00$, $p=0.89$
SW17 $R^2=0.00$, $p=0.92$

C. BCSC BoBac

BB1 $R^2=0.29$, $p=0.05$
BB2 $R^2=0.01$, $p=0.67$
BB3 $R^2=0.33$, $p<0.01$

D. BCSC BoBac

BB1 $R^2=0.29$, $p=0.05$
BB2 $R^2=0.01$, $p=0.67$
BB3 $R^2=0.33$, $p<0.01$

E. Riesel BoBac

SW12 $R^2=0.04$, $p=0.39$
SW17 $R^2=0.00$, $p=0.89$
AllBac ($r^2=0.79$, $p < 0.001$)
BoBac ($r^2=0.75$, $p = 0.001$)
Grazing Management Evaluation Summary

- Both markers higher in runoff while sites stocked suggesting they provide good indicator of recent fecal contamination from cattle.

- BoBac/AllBac ratios generally aligned with stocking rate but may have underestimated percentage of bovine-associated fecal contamination.

- Differing results in various watersheds
 - Geographic variability markers?
 - Markers correlated well with *E. coli* at one location
 - Standard curve
Questions?

Kevin Wagner
klwagner@ag.tamu.edu
979-845-2649

http://grazinglands-wq.tamu.edu/index.php

Funding Provided By:
TSSWCB, EPA & USDA-NRCS