BST as part of an integrated approach towards understanding adoption and efficacy of BMPs in an agriculture dominated watershed
Acknowledgements

• This project is financially supported by USDA-CSREES Grant Number 2009-51130
 – Co-PIs: Drs. Forbes Walker, Shawn Hawkins, Dayton Lambert, Christopher Clark
 – Extension Specialist, McMinn County: Lena Beth Carmichael
 – Graduate Students: Sean Nester, Jiangwei Liu
 – Undergraduate Students: Alexandra Rogers, Sarah Price

• Previous BST projects
 – Funding Organizations: TDEC, EPA, TVA, USGS, USDA, Blount County Soil Conservation, City of Gatlinburg, KUB, UT
 – Watersheds and Watershed groups: Stock Creek, Hiwasse River, Little River, West Prong of the Little Pigeon River, Pond Creek, Duck River
Outline

• Overview of water quality issues in Tennessee/southeastern US
• The use of *Bacteroidales* quantitative PCR assays for BST
• Integration of source identification assays in the Oostanaula Watershed
• Identification of bacteria in fecal sources using 16S rRNA amplicon pyrosequencing
Tennessee has >60,000 miles of streams and rivers and a relatively low per capita income.
64% of assessed streams do not meet water quality standards
What are the pollutant sources?

- Agriculture: 42%
- Hydrologic Modification: 20%
- Municipal: 18%
- Other: 15%
- Construction: 5%
Purported Ag Pollutant Sources

- Grazing in Riparian Zone: 64%
- Non-irrigated Crop Production: 31%
- Animal Feeding Operations: 3%
- Other: 2%
Grazing in the riparian zone

Fixing these watershed problems requires the implementation of voluntary BMPS
BST as a method to assess pollution sources at a farm scale and guide BMP implementation

- Rapid, cost effective *Bacteroidales* assays
 - Identify sources (cattle, human)
 - Estimate concentration of fecal material in water
 - Calculate fecal loading in streams based on stream discharge and concentrations
 - Map locations and types of fecal inputs
 - Model transport and predict load reductions
 - Verify effectiveness of the BMP
Direct PCR from water sample (no DNA extraction). The number of genes can be determined over a wide range of concentrations.

log-linear relationship between concentration and # of cycles to detect fluorescence
Relationship of *E. coli* concentrations and sources determined by BST

- **All**
 - >126 CFU/100ml (81%)
 - 35% Bovine (*E. coli* GM = 1384)
 - 22% Human (*E. coli* GM = 664)
 - 12% Bovine & Human (*E. coli* GM = 2365)
 - 31% Neither (*E. coli* GM = 3122)
 - <126 CFU/100ml (19%)
 - 84% No Source Marker
Relationship of *E. coli* to *Bacteroidales* assays

E. coli by source vs no Source

Mosaic Plot

E. coli by different sources

Mosaic Plot

Significant $P < 0.001$
Correlations of molecular assays to colilert *E. coli*

Bacteroidales to colilert *E. coli*

colilert *E. coli* to m*E.coli*

![Graph showing correlations](image)

- AllBAc ($r^2 = 0.22$)
- HuBac ($r^2 = 0.01$)
- BoBac ($r^2 = 0.10$)

![Graph showing correlations](image)

- $r^2 = 0.68$
Differential decay of *E. coli* and *Bacteroidales* in cow patties (summer)

E. coli

![Graph showing the decay of E. coli with the slope and R² values](image1)

Bacteroidales

![Graph showing the decay of Bacteroidales with the slope and R² values](image2)

Markers measured in 8 cow patties for up to 28 days
Comparison of bacterial markers by season

Best correlation between *E. coli* and Bacteroidales may occur in the winter.
Application of BST assays to watersheds

• What area of the watershed has the most/least pathogen impairment?
 – Can I use this information to help determine where I should spend my time/money on remediation?
 – Have the levels or locations of pathogen impairment changed over time?

• We do **NOT** attempt to address:
 – If a sample is negative is the water safe?
 – Can *Bacteroidales* assays be used as a daily monitoring tool?
Oostanaula Watershed

• 303d list of impaired stream
• *E. coli*, Phosphorus, Siltation
 – 54.2 to 72.2% in *E. coli* load reduction
• Landuse
 – Upper – Pasture/Row Crop/AFO
 – Mid – Urban/Residential
 – Lower – Pasture/Forest
Preliminary data: *E. coli* and *Bacteroidales* in Hiwasse Watershed

<table>
<thead>
<tr>
<th>Watershed</th>
<th>Main Channel Length</th>
<th>Correlation between E. coli and Bacteroides</th>
<th>Host animal Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chatata/Little Chatata</td>
<td>8.5 miles</td>
<td>0.65</td>
<td>0.1-10% Bovine 1-25% Human</td>
</tr>
<tr>
<td>Oostanaula</td>
<td>50 miles</td>
<td>0.98</td>
<td>22%-92% Bovine 0.5%-7.0% Human</td>
</tr>
</tbody>
</table>

6 to 8 sites in each sub watershed sampled on one date
Sampling

- 10 sites
- USGS gage at site 1
- Sampled 28 times over 18 months
- 260 samples
 - Colilert
 - Turbidity
 - Quantitative PCR
 - Total *Bacteroidales*
 - Bovine *Bacteroidales*
Are *E. coli* concentrations correlated to Bacteroidales concentrations?

• Across all samples *E. coli* is equally correlated to both total *Bacteroidales* and bovine associated *Bacteroidales*.
• However, turbidity is not well correlated with *Bacteroidales*.
Which site has highest concentrations of *E. coli* and Bacteroidales?

<table>
<thead>
<tr>
<th>Site #</th>
<th>E. coli (MPN)</th>
<th>ABAC mg/L</th>
<th>BoBac mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>500</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1500</td>
<td>60</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2000</td>
<td>80</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>2500</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>120</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Site 9 (upstream site) has the highest concentrations of *E. coli*, total *Bacteroidales* and bovine associated *Bacteroidales*
- *E. coli*, total *Bacteroidales* and bovine associated *Bacteroidales* drop at sites around the Athens city limit.
Is bacterial concentration related to hydrology?
Oostanaula Creek near Sanford, TN
Flow Duration Curve

USGS Gage: 03565500

Flow Duration Interval (%)

Flow (cfs)

176 cfs
71 cfs
44 cfs
23 cfs

High Flows
Moist Conditions
Mid-range Flows
Dry Conditions
Low Flows

USGS Flow Data

57 square miles
Discharge vs Site vs Marker

E. coli

Bovine Bacteroidales
Discharge vs Site vs Marker

Total Bacteroidales

Turbidity

Athens

Stream

Discharge
Summary

- The majority of fecal contamination (*Bacteroidales* and *E. coli*) arises at site 9
 - Highest concentrations and potential longest distance of travel is associated with high flows (e.g. runoff during storms)
 - Compare empirical model with calibrated ArcSwat model
What types of BMPs lead to improved water quality and which ones will producers adopt?

- Economic perspective
- Enhance capability to model effect of BMP adoption on water quality (e.g., *E. coli*, Bacteriodales)
- Supplement biophysical model
 - Farm demographic, operator attributes
 - Livestock management practices: beef cattle dominate over dairy cattle
Types of BMPs

- Rotational grazing
- Waterers
Pasture improvement
Stream Crossing
BMP economic survey

- Surveyed producers in 6 watersheds in McMinn County
- Tax Parcel records used to generate survey list for properties zoned for agriculture
- Estimate supply response of BMPs
 - Waterers, stream crossings, rotational grazing, pasture improvement (modeled after EQIP programs)
 - Hold operator, farm business, and environmental data constant
 - Vary incentives, management practices (e.g., stocking density)
- Final Survey (February, 2010)
 - 437 responses (30% response rate)
 - 143 beef cattle operations (34% of responses)
 - 13,962 pasture acres represented
BMP adoption patterns

<table>
<thead>
<tr>
<th>Practice</th>
<th>Adopters (% of total cattle operations)</th>
<th>Total Units of practice adopted across 5 watersheds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream crossing -4</td>
<td>23 (16%)</td>
<td>1,302 ft2</td>
</tr>
<tr>
<td>Rotational grazing -2</td>
<td>62 (42%)</td>
<td>3,456 ac</td>
</tr>
<tr>
<td>Pasture improvement -1</td>
<td>100 (68%)</td>
<td>4,694 ac</td>
</tr>
<tr>
<td>Waterer -3</td>
<td>61 (41%)</td>
<td>171 troughs</td>
</tr>
</tbody>
</table>
Summary

• Pasture improvement was the preferred BMP by producer
 – Positive benefit for producer-More grass = More beef
 – Positive benefit for watershed-Less runoff = Less pathogens, nutrients, sediment
• Stream crossing improvement was the least preferred BMP by producers
 – Positive benefit for watershed, producers less convinced of benefit
• The willingness of adoption of the improvement was not dependent on the cost
• BMP implementation is focusing on the upper end of the watershed and emphasizes both pasture improvement and stream crossing improvements
• BST and water quality monitoring will be performed after BMPs have been become established to determine efficacy of the BMPs
 – Hypothesize that establishment of BMPs will lead to acceptable *E. coli* concentrations and low Bacteroidales concentrations
Questions?
Can beef and dairy manure be differentiated by monitoring multiple fecal bacteria or by total community analysis?

• Different diets/husbandry may result in different gut and fecal bacteria

• Multiple new technologies to identify bacteria in complex systems:
 – Phylochip
 – 16S rRNA amplicon pyrosequencing
 – PCR arrays
Differentiation of fecal sources using 16S rRNA amplicon pyrosequencing

- Microbial community analyses using high throughput sequencing (1000’s of sequences per library)
- 14 beef cow patties collected in fall, winter, spring and summer (8 fresh and 6 aged 72 hrs)
- 8 dairy cows patties, a dairy lagoon and a dairy floor
- Data being analyzed and compared to microbial communities from sewage
16S amplicon pyrosequencing

DNA extractions

16S PCR amplification using 27f and 1492r

PCR Amplification using Barcoded Primers

Clean-up

Emulsion PCR

Mixed 10 samples/region

454 Sequencing

Data Analysis

Clean-up
Data analysis requires bioinformatics

- Ribosomal Database Project (RDP)
 - SSU rRNA collection contains 1400 Bacteria
 - Sequences arranged in phylogenetic order and aligned form
 - Each sequence is annotated with the sequence data origin and organismal source

- MG-Rast
 - Web based program with easy to visualize graphics
 - Comparisons of the user’s data and previously sequenced Prokaryotes and Eukaryotes can be made
 - Analysis is based on phylogenetic annotations only
 - Difficult to find statistical measurements

- Mothur
 - Command line
 - Analysis can be done based on OUT’s or phylogeny
 - More difficult to do comparisons with other sample sets

- Qiime
 - Command line/Cloud version
Characterization of bacteria based on phylogenetic identification
Uses of Phylogeny

• Identify dominant groups and potentially host specific strains within the groups
 – Bacteroidales
 – Clostridium

• Identify potential pathogens
 – *Streptococcus parauberis*, causes mastitis in dairy cattle, found in the dairy lagoon, floor and 1 dairy cows
 – *Campylobacter jejuni* subsp. *Jejuni* and *Campylobacter* sp. 86/06 found in 1 dairy cow.
 – *E. coli* found in dairy lagoon and 4 dairy cows
Principal Component Analysis

Possible approach for differentiating fecal sources of fecal based on complete community analysis

- Sewage samples grouped separately from cattle manure samples
 - More samples are needed to determine whether dairy will group separately from beef
Summary: Uses of *Bacteroides* assay for BST

- Allows prioritization of remediation and implementation of BMPs in subwatersheds
- Provides before and after data for confirmation of reduction in pathogens for TMDL implementation
- Future use of multiple bacterial groups may allow better resolution of sources of fecal contamination